47 research outputs found

    Scan matching by cross-correlation and differential evolution

    Get PDF
    Scan matching is an important task, solved in the context of many high-level problems including pose estimation, indoor localization, simultaneous localization and mapping and others. Methods that are accurate and adaptive and at the same time computationally efficient are required to enable location-based services in autonomous mobile devices. Such devices usually have a wide range of high-resolution sensors but only a limited processing power and constrained energy supply. This work introduces a novel high-level scan matching strategy that uses a combination of two advanced algorithms recently used in this field: cross-correlation and differential evolution. The cross-correlation between two laser range scans is used as an efficient measure of scan alignment and the differential evolution algorithm is used to search for the parameters of a transformation that aligns the scans. The proposed method was experimentally validated and showed good ability to match laser range scans taken shortly after each other and an excellent ability to match laser range scans taken with longer time intervals between them.Web of Science88art. no. 85

    Automatic epilepsy detection using fractal dimensions segmentation and GP-SVM classification

    Get PDF
    Objective: The most important part of signal processing for classification is feature extraction as a mapping from original input electroencephalographic (EEG) data space to new features space with the biggest class separability value. Features are not only the most important, but also the most difficult task from the classification process as they define input data and classification quality. An ideal set of features would make the classification problem trivial. This article presents novel methods of feature extraction processing and automatic epilepsy seizure classification combining machine learning methods with genetic evolution algorithms. Methods: Classification is performed on EEG data that represent electric brain activity. At first, the signal is preprocessed with digital filtration and adaptive segmentation using fractal dimensions as the only segmentation measure. In the next step, a novel method using genetic programming (GP) combined with support vector machine (SVM) confusion matrix as fitness function weight is used to extract feature vectors compressed into lower dimension space and classify the final result into ictal or interictal epochs. Results: The final application of GP SVM method improves the discriminatory performance of a classifier by reducing feature dimensionality at the same time. Members of the GP tree structure represent the features themselves and their number is automatically decided by the compression function introduced in this paper. This novel method improves the overall performance of the SVM classification by dramatically reducing the size of input feature vector. Conclusion: According to results, the accuracy of this algorithm is very high and comparable, or even superior to other automatic detection algorithms. In combination with the great efficiency, this algorithm can be used in real-time epilepsy detection applications. From the results of the algorithm's classification, we can observe high sensitivity, specificity results, except for the Generalized Tonic Clonic Seizure (GTCS). As the next step, the optimization of the compression stage and final SVM evaluation stage is in place. More data need to be obtained on GTCS to improve the overall classification score for GTCS.Web of Science142449243

    Novel point-to-point scan matching algorithm based on cross-correlation

    Get PDF
    The localization of mobile robots in outdoor and indoor environments is a complex issue. Many sophisticated approaches, based on various types of sensory inputs and different computational concepts, are used to accomplish this task. However, many of the most efficient methods for mobile robot localization suffer from high computational costs and/or the need for high resolution sensory inputs. Scan cross-correlation is a traditional approach that can be, in special cases, used to match temporally aligned scans of robot environment. This work proposes a set of novel modifications to the cross-correlation method that extend its capability beyond these special cases to general scan matching and mitigate its computational costs so that it is usable in practical settings. The properties and validity of the proposed approach are in this study illustrated on a number of computational experiments.Web of Scienceart. ID 646394

    Optimizing of Q-learning day/night energy strategy for solar harvesting environmental wireless sensor networks nodes

    Get PDF
    This research article presents the application of the Q-learning algorithm in the operational duty cycle control of solar-powered environmental wireless sensor network (EWSN) nodes. Those nodes are commonly implemented as embedded devices using low-power and low-cost microcontrollers. Therefore, there is a significant need for an effective and easy way to implement a machine learning (ML) algorithm in terms of computer performance. This approach uses a Q-learning-based policy implementing a sleep/run switching algorithm driven by the state of charge. The presented algorithm is based on two modes: daylight and nighttime, which is a suitable solution for solar-powered systems. The study includes the complete process of design EWSN node strategy with an optimal reward policy. The presented algorithm was tested and verified on an EWSN node model and a 5-year data set of solar irradiance values was used for the learning process and its validation. As part of the study, we are also presenting the validation in terms of Q-learning parameters, which include the learning rate and discount factor. The result section shows that the overall performance of the presented solution is more suitable for solar-powered EWSN then state-of-the-art studies. Both day/night experiments reached 828 203 measurement/transmission cycles, which is 12.7 % more than in the previous studies using the strategy defined by the state of energy storage.Web of Science27

    A hardware approach of a low-power IoT communication interface by NXP FlexIO module

    Get PDF
    This article describes implementation possibilities of specialized microcontroller peripherals, as hardware solution for Internet of Things (IoT) low-power communication, interfaces. In this contribution, authors use the NXP FlexIO periphery. Meanwhile, RFC1662 is used as a reference communication standard. Implementation of RFC1662 is performed by software and hardware approaches. The total power consumption is measured during experiments. In the result section, authors evaluate a time-consumption trade-off between the software approach running in Central Processing Unit (CPU) and hardware implementation using NXP FlexIO periphery. The results confirm that the hardware-based approach is effective in terms of power consumption. This method is applicable in IoT embedded devices.Web of Science256393

    Analysis of LoRaWAN transactions for TEG-powered environment-monitoring devices

    Get PDF
    Long-Range (LoRa) transmission technology is potentially a suitable solution in abundant applications such as smart cities, smart industries, smart health, and others, although it is challenging and complex to implement. LoRa is a non-cellular modulation technology for Long-Range Wide-Area Networks (LoRaWAN) and is suitable for Internet of Things (IoT) solutions through its long-range and low-power consumption characteristics. The present paper provides a comprehensive analysis of LoRa wireless transactions through several measurements, which differ in LoRa parameter configuration. The results showed dependency of the power consumed by the transaction on the selected Effective Isotropic Radiated Power (EIRP). The quantity of energy consumed by the transaction also significantly depends on the selected data rate (combination of the spread factor and bandwidth) and payload.Web of Science283363

    Powering batteryless embedded platforms by piezoelectric transducers: A pilot study

    Get PDF
    This contribution presents a pilot study on powering battery-less embedded systems. First, a piezoelectric transducer principle and low-power techniques are reviewed in the background section. In the experimental part, the authors describe a testing setup consisting of piezoelectric transducer, DC/DC converter with energy storage, and evaluation microcontroller platform FRDM KL25Z). Three types of experiments have been conducted for two voltage configurations including charging speed, continuous operation and discharge test. Results presented in this article concentrate on power supply voltage 1.8 V and 3.3 V), total efficiency 67.16 % and 76.75 %) and operation times 24.28 s and 15 s) of the embedded system.Web of Science252353

    A novel seismocardiogram mathematical model for simplified adjustment of adaptive filter

    Get PDF
    Nonclinical measurements of a seismocardiogram (SCG) can diagnose cardiovascular disease (CVD) at an early stage, when a critical condition has not been reached, and prevents unplanned hospitalization. However, researchers are restricted when it comes to investigating the benefits of SCG signals for moving patients, because the public database does not contain such SCG signals. The analysis of a mathematical model of the seismocardiogram allows the simulation of the heart with cardiovascular disease. Additionally, the developed mathematical model of SCG does not totally replace the real cardio mechanical vibration of the heart. As a result, a seismocardiogram signal of 60 beats per min (bpm) was generated based on the main values of the main artefacts, their duration and acceleration. The resulting signal was processed by finite impulse response (FIR), infinitive impulse response (IRR), and four adaptive filters to obtain optimal signal processing settings. Meanwhile, the optimal filter settings were used to manage the real SCG signals of slowly moving or resting. Therefore, it is possible to validate measured SCG signals and perform advanced scientific research of seismocardiogram. Furthermore, the proposed mathematical model could enable electronic systems to measure the seismocardiogram with more accurate and reliable signal processing, allowing the extraction of more useful artefacts from the SCG signal during any activity.Web of Science1115art. no. 244

    An optical-based sensor for automotive exhaust gas temperature measurement

    Get PDF
    The article introduces the design of an optical-based sensor that measures automotive exhaust gas temperatures (EGTs) over a wide temperature range. To measure temperature, we combined the luminescence method and the blackbody radiation (BBR) principle. We also developed our own measurement hardware that includes the means to process and evaluate the signals obtained for temperature conversion using optical methods for application in the target temperature range (-40 degrees C to 820 degrees C). This temperature range is specified by the automotive industry according to current combustion engine designs and emission requirements, which stipulate accurate measurement of operating temperature for optimal functioning. Current measurement solutions are based on the thermocouple principle. This approach is problematic, especially with regard to electromagnetic interference and self-diagnostics, and problems also exist with the gradual penetration of moisture into the temperature probe under extreme thermal stress. The case study confirmed the full functionality of the new optical sensor concept. The benefit of the proposed concept is full compatibility with existing conceptual solutions while maintaining the advantages of optical-based sensors. The results indicated that a combination of the BBR and luminescence methods with a ruby crystal in the proposed solution produced an average absolute error of 2.32 degrees C in the temperature range -40 degrees C to 820 degrees C over a measurement cycle time of 0.25 s.Web of Science71art. no. 700571

    Environment-monitoring IoT devices powered by a TEG which converts thermal flux between air and near-surface soil into electrical energy

    Get PDF
    Energy harvesting has an essential role in the development of reliable devices for environmental wireless sensor networks (EWSN) in the Internet of Things (IoT), without considering the need to replace discharged batteries. Thermoelectric energy is a renewable energy source that can be exploited in order to efficiently charge a battery. The paper presents a simulation of an environment monitoring device powered by a thermoelectric generator (TEG) that harvests energy from the temperature difference between air and soil. The simulation represents a mathematical description of an EWSN, which consists of a sensor model powered by a DC/DC boost converter via a TEG and a load, which simulates data transmission, a control algorithm and data collection. The results section provides a detailed description of the harvested energy parameters and properties and their possibilities for use. The harvested energy allows supplying the load with an average power of 129.04 mu W and maximum power of 752.27 mu W. The first part of the results section examines the process of temperature differences and the daily amount of harvested energy. The second part of the results section provides a comprehensive analysis of various settings for the EWSN device's operational period and sleep consumption. The study investigates the device's number of operational cycles, quantity of energy used, discharge time, failures and overheads.Web of Science2123art. no. 809
    corecore